- weakly continuous functional
- слабо непрерывный функционал
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Continuous functions on a compact Hausdorff space — In mathematical analysis, and especially functional analysis, a fundamental role is played by the space of continuous functions on a compact Hausdorff space with values in the real or complex numbers. This space, denoted by C(X), is a vector… … Wikipedia
Weakly measurable function — See also= In mathematics mdash; specifically, in functional analysis mdash; a weakly measurable function taking values in a Banach space is a function whose composition with any element of the dual space is a measurable function in the usual… … Wikipedia
Tonelli's theorem (functional analysis) — In mathematics, Tonelli s theorem in functional analysis is a fundamental result on the weak lower semicontinuity of nonlinear functionals on L p spaces. As such, it has major implications for functional analysis and the calculus of variations.… … Wikipedia
Hilbert space — For the Hilbert space filling curve, see Hilbert curve. Hilbert spaces can be used to study the harmonics of vibrating strings. The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space. It… … Wikipedia
Weak topology — This article discusses the weak topology on a normed vector space. For the weak topology induced by a family of maps see initial topology. For the weak topology generated by a cover of a space see coherent topology. In mathematics, weak topology… … Wikipedia
Compact operator on Hilbert space — In functional analysis, compact operators on Hilbert spaces are a direct extension of matrices: in the Hilbert spaces, they are precisely the closure of finite rank operators in the uniform operator topology. As such, results from matrix theory… … Wikipedia
Min-max theorem — Variational theorem redirects here. The term is also sometimes applied to the variational principle. In linear algebra and functional analysis, the min max theorem, or variational theorem, or Courant–Fischer–Weyl min max principle, is a result… … Wikipedia
Coherent states in mathematical physics — Coherent states have been introduced in a physical context, first as quasi classical states in quantum mechanics, then as the backbone of quantum optics and they are described in that spirit in the article Coherent states (see also [1]). However … Wikipedia
Amenable group — In mathematics, an amenable group is a locally compact topological group G carrying a kind of averaging operation on bounded functions that is invariant under left (or right) translation by group elements. The original definition, in terms of a… … Wikipedia
Direct method in the calculus of variations — In the calculus of variations, a topic in mathematics, the direct method is a general method for constructing a proof of the existence of a minimizer for a given functional,[1] introduced by Zaremba and David Hilbert around 1900. The method… … Wikipedia
Dirac delta function — Schematic representation of the Dirac delta function by a line surmounted by an arrow. The height of the arrow is usually used to specify the value of any multiplicative constant, which will give the area under the function. The other convention… … Wikipedia